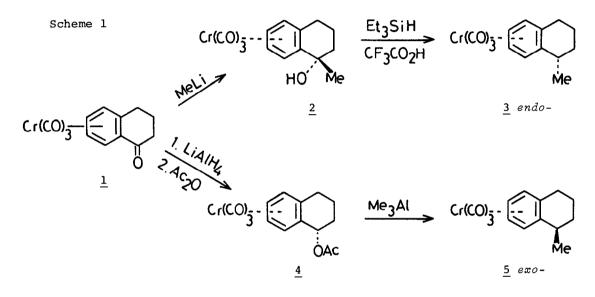
0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

 $(n^6-ARENE)$ TRICARBONYLCHROMIUM COMPLEXES IN ORGANIC SYNTHESIS: STEREOSELECTIVE ALKYLATION AT BENZYLIC POSITION OF $(n^6-ARENE)$ TRICARBONYLCHROMIUM

> Motokazu Uemura^{*}, Kazuo Isobe, and Yuji Hayashi Osaka City University, Faculty of Science, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558, Japan


Summary: Benzylic acetates and the corresponding free alcohols of $(n^6-arene)$ tricarbonylchromium complexes are alkylated stereoselectively with trialkylaluminum or diethylzinc to give *exo*-alkyl chromium complexes in high yield.

 $(n^{6}-Arene)$ tricarbonylchromium complexes, easily obtained from the arene and $Cr(CO)_{6}$, have some characteristic properties due to the strong electronwithdrawing ability and the steric bulkiness of $Cr(CO)_{3}$ group, and their significant applications in organic synthesis have been developed¹⁾. One consequence of the complexation by $Cr(CO)_{3}$ is the increased stability of the benzylic carbocations, which could be trapped with nucleophiles such as ROH, $H_{2}O$, RSH and $RCN^{2)}$. While considerable attention has been centered upon the magnitude and possible modes of this stabilization, the potential utility of these cations in carbon-carbon bond formation is very few³⁾. We now wish to report the stereoselective alkyl substitution at the benzylic position of (arene)tricarbonylchromium complexes with trialkylaluminum or dialkylzinc.

It is well documentated that two possible diastereomeric chromium complexes, *endo-* and *exo-*isomers, are obtained as a mixture by direct complexation of 1-alkylindane or 1-alkyltetralin with $Cr(CO)_6$, and the ratio of the isomers depends upon the steric effect and the nature of the substituents⁴). However, it could be possible to obtain either *endo-* or *exo-*isomers from a common α -tetralone or α -indanone stereoselectively, based on the above two factors (steric bulkiness and stability of carbocation of (arene)chromium

767


complexes). For example, a complex $\underline{2}$ obtained from (α -tetralone)tricarbonyl chromium $\underline{1}$ and MeLi, afforded an (1-endo-methyltetralin)tricarbonylchromium ($\underline{3}$, mp 84°C) by ionic hydrogenolysis⁵) with an excess of triethylsilane and trifloroacetic acid via stereoselective exo-hydride displacement⁶). On the other hand, an endo-acetate complex $\underline{4}$ was converted into an (1-exo-methyltetralin)-tricarbonylchromium ($\underline{5}$, mp 94°C) via exo-methyl attack to the carbocation by treatment with Me₃Al⁷) (scheme 1).

Other chromium complexes possessing a benzylic acetoxyl group were similarly alkylated with trialkylaluminum to give exo-alkyl complexes (Table). The (1-exo-methyl-4-exo-isopropyl-methoxytetralin) chromium complexes (13 and 15) are key intermediates for the stereoselective synthesis of cadinane sesquiterpenoid, *cis-7* or 8-hydroxycalamenene. The free benzylic hydroxyl group could not be replaced by Me2Al alone, but is substituted smoothly at room temperature in the presence of 1 eq of TiCl_A (entries 3~4). In the reaction with Et_2Zn , both the acetate complex 4 and the corresponding free alcohol complex 10 gave the exo-ethyl complex 9 only in the presence of TiCl, (entries This type of substitution is also succesful even in primary acetate 5~6). complexes (entries 10~11). Two different alkyl groups could be introduced stepwise at the different benzylic positions depending upon the reaction Thus, the secondary benzylic acetoxyl group of a complex $\underline{6}^{8)}$ was conditions. replaced by Et_3Al alone at first to give a complex <u>7</u> and then tertiay hydroxyl

entry	$Cr(CO)_{3} \xrightarrow{R^{1}O' R^{2}}$		reagents (R ³)		products	yield	
			$Cr(CO) \cdot \frac{1}{3} \cdot \frac{1}{R^{2}} \cdot \frac{1}{R^{3}}$				
1	$R^1 = Ac$, $R^2 = H$	<u>4</u>	Me ₃ Al		$R^2=H$, $R^3=Me$	<u>5</u>	99
2	$R^1 = Ac, R^2 = H$	<u>4</u>	Et ₃ Al		$R^2=H$, $R^3=Et$	<u>9</u>	60
3	$R^1 = R^2 = H$	<u>10</u>	Me ₃ Al, TiC	14	$R^2=H$, $R^3=Me$	<u>5</u>	60
4	$R^1 = H$, $R^2 = Me$	<u>2</u>	Me ₃ Al, TiC	14	$R^2 = R^3 = Me$	<u>11</u>	92
5	$R^1 = Ac, R^2 = H$	<u>4</u>	Et ₂ Zn, TiC	14	R^2 =H, R^3 =Et	9	62
6	$R^1=R^2=H$	10	Et ₂ Zn, TiC	14	$R^2=H$, $R^3=Et$	<u>9</u>	60
7	R ¹ =H, R ² =OMe	Ac 12	Me ₃ Al		$R^{1} = H, R^{2} = OMe$	13	95
8	R^1 =OMe, R^2 =H	14	Me ₃ Al		$R^1 = OMe$, $R^2 = H$	<u>15</u>	99
9	Cr (CO)	$\rightarrow \frac{16}{16}$	Me ₃ Al	Cr (CO)	$\wedge \wedge$	<u>17</u>	53
	$\operatorname{Cr}(\operatorname{CO})_{\overline{3}}$	OAc		Cr (CO)	3 R ² R ¹	5	
10	$R^1=H$, $R^2=OMe$	18	Me ₃ Al		$R^{1}=H$, $R^{2}=OMe$	<u>19</u>	96
11	$R^1 = OMe$, $R^2 = H$	20	Me ₃ Al		$R^1 = OMe$, $R^2 = H$	<u>21</u>	95

Scheme 2

Acknowledgment: We express appreciation to Toyo Stauffer Chemical Co., Ltd., for supplying the trialkylaluminum and diethylzinc.

References and Notes

- For reviews: ^aJ. P. Collman and L. H. Hegedus, ⁽Principles and Applications of Organotransition Metal Chemistry', Mill Valley, California, p. 651 (1980); ^bS. G. Davies, 'Organotransition Metal Chemistry, Application to Organic Synthesis', Pergamon Press, Oxford (1982).
- 2) ^aS. Top, A. Meyer, and G. Jaouen, Tetrahedron Lett., 3537 (1979); ^bS. Top, and G. Jaouen, J. Chem. Soc., Chem. Commun., 224 (1979); ^CIdem, J. Org. Chem., <u>46</u>, 78 (1981); ^dS. G. Davies, N. J. Holman, C. A. Laughton, and B. E. Mobbs, J. Chem. Soc., Chem. Commun., 1316 (1983).
- To our knowlege, only one example for the C-C bond formation has been reported by use of enol silyl ethers and secondary benzylacetate complexes:
 M. T. Reetz and M. Sauerwald, Tetrahedron Lett., 24, 2387 (1983).
- 4) B. E. F. Gracey, W. R. Jackson, W. B. Jennings, and T. R. B. Mitchell, J. Chem. Soc., (B), 1204 (1969) and references cited therein.
- 5) ^aD. N. Kursanov, Z. N. Parnes, and N. M. Lion, Synthesis, 633 (1974); ^bM. Uemura, K. Isobe, K. Take, and Y. Hayashi, J. Org. Chem., 48, 3855 (1983).
- Electrophilic or nucleophilic attack at the reactive center always occurs stereoselectively in an *exo*-fashion: A. Meyer and O. Hofer, J. Am. Chem. Soc., 102, 4410 (1980).
- 7) A typical experimental procedure is as follows. Me₃Al (4.2ml, 10% w/w in hexane, 3.6mmol) was added to a solution of the complex <u>4</u> (326mg, 1mmol) in dry CH_2Cl_2 (15ml) under argon at -78 °C. The mixture was stirred for 30min, and then for 1h at 0 °C. After addition of H_2O , the mixture was extracted with CH_2Cl_2 , and the extract was evaporated to give the complex <u>5</u> (282mg) after purification by SiO₂ chromatography. The complex <u>5</u> and other new complexes gave correct combustional analyses and satisfactory spectral data.
- 8) The complex <u>6</u> was prepared from a (7-methoxy-l-tetralone)tricarbonylchromium as following reactions; 1) MeLi, 2) n-BuLi/TMEDA, 3) EtCHO, 4) Ac₂O/pyridine Directed regioselective lithiation of (7-methoxy-l-tetralol)chromium complex; M. Uemura, N. Nishikawa, K. Take, M. Ohnishi, K. Hirotsu, T. Higuchi, and Y. Hayashi, J. Org. Chem., <u>48</u>, 2349 (1983). (Received in Japan 16 October 1984)